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Abstract—In this paper, we propose an enhanced peak-to-

average power ratio (PAPR) reduction framework for MIMO-

OFDM system based on unimodular quadratic programming

(UQP). In addition, we consider a more general setting for

PAPR reduction problem in MIMO-OFDM systems and propose

a novel power method-like algorithm to effectively tackle the

associated UQP. The proposed method can handle arbitrary

peak-to-average-power ratio (PAPR) constraints on the transmit

sequence, and more importantly, can be used to generate constant

modulus signals for such systems. The proposed algorithm

demonstrates an improvement in terms of convergence rate

compared with the state-of-the-art PAPR reduction method.

Index Terms—Multiple Input Multiple Output (MIMO),

beamforming, peak-to-average power ratio (PAPR), unimodular

quadratic programming (UQP), convex and non-convex opti-

mization, constant modulus signal design, orthogonal frequency

division multiplexing (OFDM)

I. INTRODUCTION

M
IMO-OFDM has attracted a lot of attention from wire-
less research community and has become one of the

most promising techniques for the next generation wireless
systems requiring high-speed data rates. Such systems, on the
other hand, suffer from disadvantages of the OFDM technique,
e.g., sensitivity to time and frequency synchronization error,
and the large peak-to-average power ratio (PAPR) of transmit-
ted OFDM signals. In particular, the high PAPR in MIMO-
OFDM systems is exacerbated as the number of antennas in-
creases [1]. On the receiver side, the performance of non-linear
equipment such as high power amplifier (HPA) and digital-to-
analog (DAC) converters can be severely degraded due to high
PAPR. For instance, it is desirable to keep the HPA’s operation
region near saturation to achieve maximum efficiency, while
a high PAPR would introduce non-linear distortion in the
communication channel and devices which further results in
a drastic increase of the error rate at the receiver. Hence, it
is crucial to develop PAPR reduction techniques for MIMO-
OFDM systems to increase their efficiency in handling large
data-streams and further reduce their error rates.

There has been extensive research on PAPR reduction
techniques in OFDM systems, e.g., Partial Transmit Sequence
(PTS) [2], Active Constellation Extension (ACE) [3], Selected
Mapping (SLM) [4] are among the most notable works. In
addition, the authors in [5] have proposed a joint PAPR
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reduction framework for MIMO-OFDM systems. However,
most of these method are studied in the context of single-
input single-output (SISO) systems and their extension to
MIMO systems are not easily applicable, and moreover, their
computational complexity are extremely high. More recently,
a new promising precoding PAPR reduction method called
CP-PTS has been proposed in [6] in MIMO-OFDM systems,
where each OFDM block with large number of subcarriers
is grouped into Resource Blocks (RB). Then, a complex
weighting matrix is assigned to the phase of each RB, and
these precoding weighting matrices are then optimized to
reduce the PAPR of the transmitted OFDM symbol using either
a Steepest Descent Constant Modulus Algorithm (SDCMA) or
an alternate Unit-Circle CMA (UC-CMA) [7], [8]. In general,
precoding is an effective way to reduce PAPR in OFDM
systems. Furthermore, to ensure that the BER performance
of the system is not affected by the precoding matrix, it
is of importance to design the precoding matrix in a way
that the weights lies on the unit circle. An interested reader
may consult with [9] and the references therein for further
information on PAPR techniques in OFDM signals.

In this paper, we propose an efficient alternative approach
to the constant modulus MIMO-OFDM PAPR reduction algo-
rithm in [8]. We first formulate the PAPR reduction in OFDM
systems as a Unimodular Quadratic Program (UQP), and then,
we employ power method-like iterations for local optimization
of the proposed UQP. Our proposed algorithm consider a
doubly PAPR constrained scenario in OFDM schemes and can
be compared to the state-of-the-art SDCMA and UC-CMA
algorithms proposed in [8] in terms of convergence rate (i.e.,
converging faster) with an emphasis on the first.

II. SYSTEM MODELS

In this paper, we undertake a similar setting to [8], and
consider an ordinary MIMO-OFDM downlink communication
system with one base station (BS) employing Nt transmission
antennas. In this setting, each OFDM block consists of N

subcarriers to be transmitted from antennas. These N subcar-
riers combine Nu useful subcarriers each of which surrounded
by two zero-energy guard bands (GBs). Moreover, these Nu

subcarriers are divided into a set of M resource blocks (RBs)
each consisting of Nb = Nu/M subcarriers. Then, each RB
is allocated with users data using space-time block coding
(STBC) and inverse discrete Fourier transform (IDFT). In
addition, several training pilot subcarriers are placed in RBs
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for the purpose of channel estimation at the User Equipment
(UE).

We first consider the frequency domain representation of
the MIMO transmit signal model. Let Dr 2 CNt⇥Nb denote
the r-th RB transmit data model. Then, a corresponding beam-
forming matrix Wr 2 CNt⇥Nt (for r = 1, . . . ,M ) is formed
to linearly precode Dr to construct a transmit sequence as

Xr = WrDr, (1)

where Xr 2 CNt⇥Nb is the precoded vector associ-
ated with the r-th resource block. Furthermore, let W =
[WH

1 , . . . ,WH

M
]H , and D 2 CMNt⇥N be a block-diagonal

matrix of the form

D =

2

6664

GB D1

D2

. . .
DM GB

3

7775
, (2)

where GB denotes the zero-energy subcarriers guard bands.
The aggregated data model for a single time block can be then
simply modeled as

X = WHD, (3)

where Nt rows of the data matrix X 2 CNt⇥N define the N

symbols to be transmitted from Nt antennas at the BS. Note
that the spatial data in the frequency domain is represented in
the data matrix X [8]. After employing the beam-forming via
the complex weight matrix W , the time-domain representation
of the spatial data in the matrix X can be obtained via
performing the IDFT operation, viz.

Y = XFH = WH DFH

| {z }
,B

, (4)

where FH 2 CN⇥N denotes the IDFT matrix, and the full
matrix B is the time-domain representation of the data matrix.
More compactly, the beam-formed MIMO-OFDM transmit
data can be modeled as Y = WHB.

Let p = vec(D), where vec(·) denotes the column-wise
vectorization operator. Then, the total power of the data matrix
D is given by

P = kDk2
F
= kpk22 = ↵NT , (5)

where ↵ denotes the average transmit power per sam-
ple, and NT = NtN . Note that if the beam-
forming matrices {Wr}Mr=1 lies on the Stiefel mani-
fold St(Nt, Nt) := {U 2 CNt⇥Nt |UHU = I}, i.e.,
W consists of orthonormal matrices; then, PY := kY k2

F
=

Tr(WHW )kFHk2
F
kDk2

F
= P , where Tr(·) denotes the trace

operator, and thus, the beam-forming and IDFT operation
does not affect the total transmit power P . However, as a
large number of subcarriers are added with the same phase,
the OFDM symbols generates a high peak power in time-
domain, which drastically degrades the performance of the
communication system. In general, the peak-to-average power
ratio of a discrete-time OFDM signal for a MIMO-OFDM
block is defined as

PAPR(Y ) =
NT kvec(Y )k21
kvec(Y )k22

(6)

Interestingly, note that the PAPR in (6) assumes it lowest value
only when the signal is constant modulus.

In [8], the authors formulate the problem of PAPR reduction
as designing a precoding matrix to convert the OFDM symbols
in Y to achieve a desirable and ideally constant modulus signal
S with lower PAPR than that of the original symbols. In order
to do so, they premultiply each Dr with a diagonal complex
weighting matrix Ar (this scaling manifests itself as a fading
channel to the receiver). In addition, if we further assume
that this scaling matrix is unimodular (constant modulus), and
hence, the BER performance of the MIMO-OFDM system will
not be affected by this precoding. In other words, assume
a unimodular diagonal precoding matrix A 2 CMNt⇥MNt

is premultiplied with the data matrix D. Then, instead of
the original MIMO-OFDM signal Y , we construct a desired
transmit matrix S as

S = WHADFH (7)

Now, the PAPR reduction problem reduces to the following
program

min
a

kvec(S)k21 s.t. kvec(S)k22 = P, (8)

where a = vecdiag(A). Note that the program of (8) is not
convex due to the non-linear equality constraint. The above
non-convex program can be further simplified via using the
properties of Kronecker product and noting that vec(S) =
(BT � W )vecdiag(A) = Ca, where C 2 CMNt⇥N ,
(·)T denotes the matrix transpose, � denotes the Khatri-Rao
product, and the function vecdiag(·) forms a column vector
whose elements are the main diagonal of the matrix argument.
In [8], the authors has considered the following equivalent
optimization problem:

min
a

kCak21 s.t. kCak22 = ↵NT , (9)

where ↵NT is a fixed total transmit power. The above program
is not convex and admits many local minimum and is generally
hard to tackle. In the next section, we propose a novel uni-
modular quadratic programming approach based on the power
method-like iteration [10] which is guaranteed to converge to
good solutions, and also is computationally efficient, and thus,
making it a suitable candidate for real-time signal processing
applications in MIMO-OFDM systems.

III. THE PROPOSED ALGORITHM

A. k-Modular Quadratic Programming (k-MQP)
In its general form, the PAPR reduction problem in our

setting can be formulated as follows:

min
a

kCak21 (10)

s.t. |a(n)|  k, 8n,
kak22 = MNt,

where a(n) denotes the n-th element of the vector a. The
main idea in [8], is to replace the infinity norm in (9) with
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the average deviation of the signal from a CM signal with the
hope of obtaining the resulting signal S close to a CM signal,
and considering that the PAPR achieves its minimum for such
a signal. Namely, instead of the objective function in (9), the
authors consider the following cost function

J1(a) = kCa� (Ca)⇤ � ↵1Ntk22 =
NTX

n=1

�
aHcnc

H

n
a� ↵

�2
,

(11)
where cn denotes the n-th row of matrix C, 1NT represents
the all-one vector with dimension NT , and � denotes the
point-wise multiplication. The objective function J1(a) ap-
pears to be a quartic function of a. However, one can verify
that the objective function of (9) is almost equivalent to a
quadratic function; see the following. We first note that

J1(a) =
NTX

n=1

�
|cH

n
a|2 � ↵

�2
. (12)

Briefly speaking, J1(a) achieves small values (or becomes
zero) if and only if

J2(a) = min
{�n}

NTX

n=1

|cH
n
a�

p
↵e

j�n |2

| {z }
J3(a,{�n})

, (13)

becomes small (or zero) (for a detailed analysis see [10], [11]),
where the set of phases {�n}NT

n=1 are exploited as auxiliary
variables. Alternatively, one can rewrite J2(a) as:

J2(a) = max
{�n}

NTX

n=1

|cH
n
a+

p
↵e

j�n |2

| {z }
J3(a,{�n})

. (14)

When the latter J2(a) achieves its maximal value, J1(a) will
also assume small value (or zero). The next point to note is
that the criterion in (14) can be alternatively expressed as

J3 (a, {�n}) =
NTX

n=1

�
cH
n
a+

p
↵e

j�n
�H �

cH
n
a+

p
↵e

j�n
�

=
NTX

n=1

⇥
aHcnc

H

n
a+ 2<{

p
↵aHcne

j�n}+ ↵
⇤
.

(15)

Therefore, the maximization of J3(a, {�n}) with respect to
either a or {�n} can be equivalently written in terms of a
new objective function J4(a, {�n}) as follows

max
a,{�n}

J4(a, {�n}) s.t. a, {�n} 2 ⌦, (16)

where ⌦ denotes the search space of the optimization vari-
ables, and

J4(a, {�n}) =
✓

a
1

◆H ✓
C 0 b
bH ↵

◆

| {z }
C̃

✓
a
1

◆
, (17)

where,

C 0 =
NTX

n=1

cnc
H

n
= CHC, b =

p
↵

NTX

n=1

cne
j�n .

TABLE I
THE PROPOSED OPTIMIZATION ALGORITHM FOR PAPR REDUCTION

Step 0: Initialize the precoding vector a 2 CMNt with a unimodular (or
low PAPR) vector. Choose a desirable PAPR constraint value k, i.e., set
k = 1 for obtaining a unimodular solution or set k > 1 to obtain a more
general PAPR.
Step 1: Compute the matrix C = (B⇤ �W )H and form the matrix C̃
as defined in (17).
Step 2: Employ the power method-like iterations following (20) or (22)
(depending on the PAPR constraint �) to update a.
Step 3: Repeat Step 2 until a pre-defined outer-loop iteration number is
satisfied.

The maximization of J4 in (16) can be tackled via employing
a cyclic optimization approach with respect to a and {�n}.
Note that for fixed a, the maximizers of J4 are simply given
by:

�n = arg
�
cH
n
a
�
, (18)

where, arg(·) denotes the phase angle operator, and more
generally, in its vectorized form as

� := [�1, . . . ,�n]
T = arg (Ca) . (19)

On the other hand, for fixed �, the optimization of J4 with
respect to a boils down to

max
a

✓
a
1

◆H

C̃

✓
a
1

◆
(20)

s.t. |a(n)|  k, 8n,
kak22 = MNt,

The optimization problem in (20) can be tackled efficiently us-
ing the power method-like iterations introduced and discussed
extensively in [10], [12], and [13]. We notice that C̃ is always
positive definite, then for the unimodular case (i.e., k = 1),
the objective function in (20) can be monotonically increased
via the following iterations:

a(s+1) = ⌘

✓
exp

✓
jarg

✓
C̃

✓
a(s)

1

◆◆◆◆
, (21)

where s denotes the iteration number, and ⌘(·) takes the first
MNt entries of the vector argument. For the case of k > 1,
the objective function in (20) can be monotonically increased
via considering the following nearest-vector problem at each
iteration:

min
a(s+1)

����

����a
(s+1) � ⌘

✓
Ĉ

✓
a(s)

1

◆◆����

����
2

2

, (22)

s.t. |a(s+1)(n)|  k, 8n,
ka(s+1)k22 = MNt.

The latter problem can be tackled efficiently using an O(MNt)
recursive algorithm in [14].

The proposed optimization algorithm for PAPR reduction
derived above is summarized in Table I.
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IV. NUMERICAL RESULTS

The comparison of choosing different PAPR constraint
values k are evaluated as follows in 10MHZ WiMAX system.
Each RB spans 14 sub-carriers over two OFDM symbols
in time, containing 24 data symbols and 4 pilot symbols.
The simulation system possesses 2 transmitting antennas and
2 receiving antennas. there are total of 60 RBs, including
MtNd = 840 data subcarriers with QPSK modulation. 10,000
OFDM blocks are randomly generated and for each of them,
a random complex fading channel is generated, and the beam-
forming matrices W are chosen as the right singular vectors
of these matrices.

A. Performance in PAPR Reduction
In Fig. 1, Complementary cumulative distribution functions

(CCDF) curves are shown for k-MQP (20 iterations) with
various choices of k, compared to UC-CMA [8] (20 iterations).
When we set k > 2, the PAPR reduction performance of k-
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Fig. 1. PAPR reduction performance of k-MQP and UC-CMA

MQP are very close. In the case of k-MQP (k > 2), PAPR
reduction of up to 7.3 dB. 1-MQP is worse by about 1.4
dB. Moreover, comparing to UC-CMA, CCDF curves show
superior performance of k-MQP in almost 70% of OFDM
blocks in setting k > 2.

B. Bit Error Rate
Fig. 2 shows BER versus SNR curves for the QPSK-OFDM

system in scenarios that k-MQP and UC-CMA weights are
applied at the transmitter. The channel in the case of both
approaches is AWGN and the received vector is divided by
a to equalize the PAPR weights. As expected, 1-MQP and
UC-CMA does not effect the BER performance and perfect
channel recovery is assumed when k > 2.

C. Convergence rate comparison
With iteration numbers growing, 1,000 OFDM blocks are

randomly chosen to record the PAPR reduction value. As
illuminated in Fig. 3, obviously, the k-MQP (k > 2) algorithm
converges faster. Average PAPR value for k-MQP (k > 2) is
lower about 0.15dB than the one for UC-CMA.
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Fig. 2. BER performance comparison of k-MQP and UC-CMA
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Fig. 3. comparison of average PAPR values versus outer-loop iteration
numbers for k-MQP and UC-CMA

V. CONCLUDING REMARKS

In this paper, we proposed a QP formulation for PAPR
reduction in OFDM systems and tackled the problem by
employing the power method-like iterations. . The main results
can be summarized as follows:
• The proposed algorithm considers a doubly PAPR con-

strained scenario in OFDM systems, which can handle
arbitrary PAPR constraints and enjoys from good con-
vergence rate (i.e., suitable candidate for real-time signal
processing applications)

• At the expense of Nt auxiliary variables (which their op-
tima are analytically given), we can introduce a quadratic
alternative for the quartic cost function (J1) and the `1-
norm based objective in (10). Undertaking such approach
paves the way for tackling the problem more easily as
QPs are more widely studied.

• The power method-like iterations discussed in (20)-(22)
are studied previously, and are proved to converge locally,
with a monotonic change in the objective function. The
use of such iterations can be extended to M-ary alphabet
or other kinds of structured signals.
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