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Main Results

The current ubiquitous paradigm of few-shot 
cross-lingual transfer first trains on source 
language and fine-tunes with a few target shots 
(target-adapting).

We show some deficiencies of this approach 
and propose a one-step mixed training method 
that trains on both source and target data with 
stochastic gradient surgery, a novel gradient-
level optimization.

• Deficiency 1: Unrealistic Development Set
Previous studies utilize a large amount of dev sets 
for each target language for model selection, e.g., 
even around 10K dev examples for Arabic in the NER 
task. However, it is unlikely that such a dev set would 
be available in reality, especially for the extreme 
low-resource training.

Solution 1:
ord-FS+dev: ordinary Few-Shot method (target
adapting) with unrealistically dev set.
ord-FS: ordinary Few-Shot method (target-adapting)
without unrealistically dev set.

• Deficiency 2: One Model for Each Language
we do not need to fine-tune specialized models for 
every target language, which is of particular interest 
when scaling to dozens or even hundreds of 
languages.

Solution 2:
mix-FT: mixed fine-tuning on concatenated target         
examples together.

• Deficiency 3: Language Domain Gap
Abruptly shifting the source domain to the target 
domain leads to very poor performance.

• Deficiency 4: Quick Overfitting
the model performs best on the dev set at the 
beginning of training at a small number of shots, e.g.
1-shot, 5-shot.

Solution  3:
naïve-mix-train: naively training both source and  
all target examples together.

One issue of naive-mix-train is conflicting gradients among languages. The main idea is 
using gradient surgery (Yu et al., 2020). However, it is extremely computationally expensive 
to de-conflict gradients between every pair of languages, especially when it comes to 
large-scale languages for training.

gradient-mix-train: We randomly choose a target language to conduct gradient surgery in 
each batch training.
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Which Language Benefits Most?
We retrieve Top-5 languages that achieve the highest improvement by using 
gradient-mix-train methods compared to ord-FS on all tasks in 5-shot learning.

Visualization of Gradient De-Conflicting: Gradient similarities across 48 languages in the 
NER task with 5 shots before and after Stochastic Gradient Surgery. Deeper colors 
represent higher cosine similarities. Conflicting gradients are directly marked as white cells 
in the heatmap.
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We conduct experiments on 4 tasks, NER (48 langs), POS (35 langs), TyDiQA (9 langs), XNLI 
(15 langs). We repeat every experiment 5 times with 5 different random seeds. 


