

Por Qué Não Utiliser Alla Språk? Mixed Training with Gradient Optimization in Few-Shot Cross-Lingual Transfer

Haoran Xu, Kenton Murray

OverView

The current ubiquitous paradigm of few-shot cross-lingual transfer first trains on source language and fine-tunes with a few target shots (target-adapting).

We show some deficiencies of this approach and propose a one-step mixed training method that trains on both source and target data with stochastic gradient surgery, a novel gradientlevel optimization.

Deficiencies of Target-Adatping

• Deficiency 1: Unrealistic Development Set

Previous studies utilize a large amount of dev sets
for each target language for model selection, e.g.,
even around 10K dev examples for Arabic in the NER
task. However, it is unlikely that such a dev set would
be available in reality, especially for the extreme
low-resource training.

Solution 1:

ord-FS+dev: ordinary Few-Shot method (target adapting) with unrealistically dev set.
ord-FS: ordinary Few-Shot method (target-adapting) without unrealistically dev set.

• Deficiency 2: One Model for Each Language we do not need to fine-tune specialized models for every target language, which is of particular interest when scaling to dozens or even hundreds of languages.

Solution 2:

mix-FT: mixed fine-tuning on concatenated target examples together.

- Deficiency 3: Language Domain Gap

 Abruptly shifting the source domain to the target domain leads to very poor performance.
- Deficiency 4: Quick Overfitting
 the model performs best on the dev set at the
 beginning of training at a small number of shots, e.g.
 1-shot, 5-shot.

Solution 3:

naïve-mix-train: naively training both source and all target examples together.

Scan me for more details!

Mixed Training with Stochastic Gradient Surgery

One issue of **naive-mix-train** is conflicting gradients among languages. The main idea is using gradient surgery (Yu et al., 2020). However, it is extremely computationally expensive to de-conflict gradients between every pair of languages, especially when it comes to large-scale languages for training.

$$g_s' = g_s - \frac{g_s \cdot g_t}{\parallel g_t \parallel^2} g_t$$

gradient-mix-train: We randomly choose a target language to conduct gradient surgery in each batch training.

Main Results

We conduct experiments on 4 tasks, NER (48 langs), POS (35 langs), TyDiQA (9 langs), XNLI (15 langs). We repeat every experiment 5 times with 5 different random seeds.

\overline{K}	Methods	NER		
		Avg. F1 (%)	sd.	
K = 0	Zero-Shot	64.56	-	
	ord-FS+dev (Zhao et al., 2021)	65.92	0.84	
K = 1	ord-FS (Zhao et al., 2021)	64.11	0.98	
	mix-FT (Ours)	65.71	0.90	
	naive-mix-train (Ours)	67.31	0.58	
	gradient-mix-train (Ours)	69.58	0.99	
K = 5	ord-FS+dev (Zhao et al., 2021)	68.22	0.69	
	ord-FS (Zhao et al., 2021)	65.91	0.91	
	mix-FT (Ours)	70.60	0.85	
	naive-mix-train (Ours)	72.06	0.68	
	gradient-mix-train (Ours)	73.27	0.60	
	ord-FS+dev (Zhao et al., 2021)	69.85	0.60	
K = 10	ord-FS (Zhao et al., 2021)	68.75	0.67	
	mix-FT (Ours)	73.89	0.56	
	naive-mix-train (Ours)	74.13	0.45	
	gradient-mix-train (Ours)	75.92	0.61	

Analysis

Visualization of Gradient De-Conflicting: Gradient similarities across 48 languages in the NER task with 5 shots before and after **Stochastic Gradient Surgery**. Deeper colors represent higher cosine similarities. Conflicting gradients are directly marked as white cells in the heatmap.

Which Language Benefits Most?

We retrieve Top-5 languages that achieve the highest improvement by using gradient-mix-train methods compared to **ord-FS** on all tasks in 5-shot learning.

NER		POS		TyDiQA		XNLI	
lang.	Δ F1 (%)	lang.	Δ F1 (%)	lang.	Δ F1 (%)	lang.	Δ Acc. (%)
pa	17.60	wo	3.82	bn	12.27	sw	2.36
zh	15.24	mr	3.51	te	11.14	ur	1.95
ar	14.14	hi	2.60	sw	10.58	ru	1.68
vi	13.22	tr	2.18	ar	9.45	fr	0.91
hi	12.68	fi	1.55	fi	9.05	zh	0.78